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ABSTRACT 

Support vector machine (SVM) is one of the most popular algorithms in machine learning 
and data mining. However, its reduced efficiency is usually observed for imbalanced 
datasets. To improve the performance of SVM for binary imbalanced datasets, a new scheme 
based on oversampling and the hybrid algorithm were introduced. Besides the use of a 
single kernel function, SVM was applied with multiple kernel learning (MKL). A weighted 
linear combination was defined based on the linear kernel function, radial basis function 
(RBF kernel), and sigmoid kernel function for MKL. By generating the synthetic samples 
in the minority class, searching the best choices of the SVM parameters and identifying 
the weights of MKL by minimizing the objective function, the improved performance of 
SVM was observed. To prove the strength of the proposed scheme, an experimental study, 
including noisy borderline and real imbalanced datasets was conducted. SVM was applied 
with linear kernel function, RBF kernel, sigmoid kernel function and MKL on all datasets. 
The performance of SVM with all kernel functions was evaluated by using sensitivity, 
G Mean, and F measure. A significantly improved performance of SVM with MKL was 
observed by applying the proposed scheme. 

Keywords: Hybrid algorithm, imbalanced datasets, multiple kernel learning, oversampling algorithm, support 

vector machine

INTRODUCTION

SVM is a popular supervised machine 
learning algorithm, successfully handling 
classification tasks in many real-world 
applications: for example, credit scoring, 
text classification and bankruptcy prediction 
(Chaudhuri & De, 2011; Shin et al., 2005; 
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Sun et al., 2009; Huang et al., 2007). SVM has a strong theoretical and mathematical 
background and a high generalization capability of finding the global and non-linear 
classification solutions (Ben-Hur & Weston, 2010). However, its performance becomes 
limited for the classification task of imbalanced noisy and borderline datasets (Imam et 
al., 2006; Eitrich & Lang, 2006). 

As the optimal performance of SVM is based on the decent choices of its parameters 
with kernel settings, the model selection problem essentially includes the search for the 
best values of the slack variable penalty weight (C) and kernel parameters, which are 
supposed to be used for the classification task. Traditionally, a grid search selection is 
adopted. Nevertheless, this method is time-consuming and does not produce the desired 
results (Hsu & Lin, 2002; Hsu et al., 2003). The present study is based on this prevailing 
issue of SVM. The current research work will address and discuss the issues of SVM for 
binary imbalanced datasets. Besides the use of a single kernel function, the current study 
will examine the performance of SVM with MKL. This study aims to present a new scheme 
for the said task. 

 Primary research works in MKL from the perspective of optimization techniques, can 
be seen from an interesting and brief research work presented by Lanckriet et al. (2004). 
The authors proposed an idea of using semidefinite programming (SDP) for kernel learning. 
Since SDP is a convex form of optimization and avoids being trapped in local optima, a 
transductive algorithm was offered. Furthermore, a learning method of SVM parameters 
was discussed. Afterward, an idea of using semi-infinite programming for the conic 
combination of kernels was proposed by Sonnenburg et al. (2006). The authors suggested 
the use of evolutionary approach, genetic algorithm (GA) in determining the weights 
of combined kernels of SVM. The authors gave a new direction to kernel learning by 
embedding the metaheuristic algorithms in it. Zhang (2006) proposed kernel optimization 
for SVM using the Levenberg-Marquardt (LM) algorithm instead of using the gradient 
descent approach to test the protein location data from yeast. Linear combinations of 
kernels for SVM in regards to speaker verification were used by Dehak et al. (2008). The 
combination weights were speaker dependent as compared to the universal weights on 
score level fusion. Another comprehensive study on the linear and nonlinear combinations 
of kernels was conducted by Cortes et al. (1995). 

Cao et al. (2013) proposed an idea of optimized cost-sensitive SVM. An effective 
wrapper framework incorporating the area under the curve (AUC) and G Mean into the 
objective function of SVM was introduced to gain a better performance of SVM. A subset 
of feature selection, parameters, and misclassification cost were simultaneously optimized. 
Jiang et al. (2014) presented an idea for the optimal selection of SVM parameters by using 
three metrics namely AUC, accuracy and balanced accuracy using computational data. The 
authors engaged different levels of separability, different levels of imbalances and different 
levels of training sets in the study. 
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To enhance the performance of SVM for imbalanced datasets, different resampling 
approaches were also proposed by researchers. Most of them suggested the use of 
the oversampling technique, synthetic minority oversampling technique (SMOTE) in 
combination with SVM. Different kinds of sampling techniques were proposed; for 
example, a combined sampling approach using SMOTE and Tomek link with SVM for 
binary classification, a hybrid sampling approach using under and oversampling, and an 
ensemble method i.e. bagging of extrapolation borderline SMOTE (BEBS), which all can 
be studied from the available literature (Sain & Purnami, 2015; Wang, 2014; Wang et al., 
2017).

Due to the emerging use of metaheuristic techniques for optimization problems, the 
use of these techniques for SVM can also be justified. For example, GA based feature 
selection and parameter optimization procedure for SVM can be found in the literature 
(Wang et al., 2011). GA and particle swarm optimization (PSO) for SVM and ant colony 
optimization (ACO) for SVM model selection can also be seen in the available studies on 
SVM optimization (Alwan & Ku-Mahamud, 2013; Ren & Bai, 2010; Blondin & Saad, 
2010). An efficient memetic algorithm based on PSO and pattern search (PS) was proposed 
for SVM parameter optimization. PSO was used for the exploration purpose while PS 
was applied for exploitation (Bao et al., 2013). Another study proposed a combination of 
optimization and classification algorithms for SVM by using SMOTE and PSO (Cervantes 
et al., 2017). Wu et al. (2017) applied two-phase sequential minimal optimization (TSMO) 
and differential learning particle swarm optimization (DPSO) for SVM. 

This article is organized as follows: material and methods are provided in Section 2. 
In Section 3, the proposed scheme is presented. Results of the experimental studies are 
given in Section 4. The conclusion is discussed in Section 5.

MATERIAL AND METHODS 

According to Abe (2005), SVM as a nonlinear classifier can offer a better precision in 
many real-world applications. The process of making linear classifiers become nonlinear 
is to map the data from input space X to feature space F by using a nonlinear function ϕ
: X F→ . In the feature space F, the discriminant function can be written as:

0( ) ( )Tg x xθ ϕ θ= +     (1)

where θ  is known as the weight vector and 0( ) ( )Tg x xθ ϕ θ= +  represents the bias. Kernel methods 
provide the best way of tackling this problem of mapping data to the high dimensional 
feature space instead of computing their dot products. Suppose that the weight vector may 
be expressed as a linear combination of training examples ( rT ) as follows:           
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=

= ∑      (2)

Therefore, in terms of a discriminant function, it can be written as: 
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= +∑       (3)

In the feature space, Equation (1) can be written as:  

0
1

( ) ( ) ( )
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i i i
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g x x xβ ϕ ϕ θ

=

= +∑     (4)

This representation in terms of the variables iβ  is called the dual representation of the 
decision boundary (Ben-Hur & Weston, 2010). According to Scholkopf and Smola (2001), 
a kernel function is a function that returns the dot product of the vectors by taking vectors 
as inputs in the original space. Mathematically, for data 1,x x X∈ , a kernel function is 
defined by 1 1( , ) ( ) , ( )Tk x x x xϕ ϕ= , where φ is a kernel function. In terms of the kernel 
function, Equation (4) can be rewritten as:

0
1

( ) ( , )
rT

i i
i

g x k x xβ θ
=

= +∑     (5)

Kernel-based methods such as SVM have been proven as an effective technique for 
data analysis in different fields of life. These methods employ the kernel functions that 
can compute the similarity between two vectors 1x and 1x  (Sonnenburg et al., 2006). 
Since different kernels correspond to different designs of similarity. Therefore, forming a 
combination of different kernels may lead to a better solution to the problem. 

Multiple Kernel Learning

MKL is a set of machine learning strategies that use the predefined set of kernels. The 
predefined set of kernels may or may not be linear but its optimality is always demanding. 
Instead of creating a new kernel, MKL is an efficient way to combine the existing kernels. 
In MKL, it is assumed that for rT  training data point ( , )i ix y , 1,2,..., ri T=  where ix X∈  
for some input space X and { }1,1iy ∈ − , there are M kernel matrices that are assumed to 
be symmetric and positive semi-definite (PSD). The problem is to find the best linear 
combination of the kernel 

1

M

l l
l

kγ
=
∑  

 
with non-negative weights i.e. 0lγ ≥  and 

1
1

M

l
l
γ

=

=∑  
for 1, 2,...,l M=  (Bach et al., 2004; Shawe-Taylor & Cristianini, 2004). In this study, 
three kernel functions are engaged: linear kernel function, RBF kernel and sigmoid kernel 
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function (Scholkopf & Smola, 2001). The linear kernel function is computed by using 
1 1( , )k x x x x′= , RBF kernel can be defined by 2

1 1( , ) exp( )k x x x xν= −  where ν  is the 
positive parameter of RBF kernel for controlling its radius, and sigmoid kernel function 
can be stated as 1 1 0( , ) tanh( )sk x x x x cα ′= +  where sα  > 0 is the scaling parameter and 

0 0c ≤  is the shifting parameter (Wang & Xu, 2017). The MKL practices different learning 
methods to combine kernels. The comprehensive details of these methods can be studied 
from Gonen and Alpaydin’s (2011) work. The current study will apply an optimization 
approach for MKL to combine the kernel functions for the classification tasks of binary 
imbalanced datasets. The linear weighted combination of these three kernel functions is 
cast-off to learn them in terms of MKL.

3

1 1 2 2 3 3
1

l l
l

MKL k k k kγ γ γ γ
=

= = + +∑   (6)

where 0lγ ≥ , 
3

1
1l

l
γ

=

=∑ , and 1 2,k k , and 3k are linear, RBF, and sigmoid kernel 

function respectively. 1 2,γ γ , and are the weights of the respective kernels.

Proposed Hybrid Algorithm 

A hybrid algorithm is proposed during our research work for the optimization of continuous 
and nonlinear test functions. The bi-objective version of this hybrid algorithm was discussed 
by Saeed & Ong (2018). This hybrid algorithm grabbed the advantages of evolution 
strategies (ES) and swarm intelligence (SI). Covariance matrix adaptation evolution 
strategy (CMA-ES) and cuckoo search (CS) are combined for this task. As an application, 
this hybrid algorithm is engaged in this study.  

Covariance Matrix Adaptation Evolution Strategy. CMA-ES is one of the most powerful 
evolutionary strategy proposed by Hansen et al. (1997). The key idea of CMA-ES lies in 
its invariance properties, which can be achieved by carefully planned variation, selection 
operators and efficient self-adaptation of mutation distribution (Igel et al., 2007). CMA-ES 
works with three operations: (1) Sampling from the multivariate normal distribution (2) 
Selection and recombination and (3) Adaptation of the covariance matrix.

Cuckoo Search. CS is one of the most popular nature-inspired metaheuristic algorithms 
proposed by Yang & Deb (2009), for the continuous nonlinear optimization problems. This 
algorithm is inspired by the cuckoos, the fascinating birds not only due to their sounds but 
also because of their hostile reproductive approach (Yang and Deb, 2009). Based on the 
egg-laying behavior of cuckoos, CS algorithm has the following three rules (1) each cuckoo 
lay one egg at a time and dumps it in a randomly chosen nest. (2) For the next generation, 
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the best nest with high-quality eggs are approved only. (3) The number of host nests (n) is 
fixed and the egg laid by a cuckoo is discovered by the host bird with a probability Pa. In 
this case, the host bird has two choices either to get rid of the egg or simply abandon the 
nest to build a completely new nest. 

For the hybrid algorithm, after setting the objective function in CS, and after generating 
the initial solution, the best solution ( s

csX ) are produced at sth iteration. Then with the 
recombination operator of CMA-ES, the weighted means sm are produced. Before moving 
to the next iteration, in order to produce the new solution the best solution obtained from 
CS and the weighted mean from CMA-ES are plugged in into this new solution with the 
help of this following equation:                                 

s s s
CSX X m= +      (7)

For the next iteration (s + 1), X s is used to get new solutions. Then the procedure of 
discovery and randomization are completed. All details are provided in the pseudocode 
of algorithm (see Algorithm 1). 

Synthetic Minority Oversampling Technique

SMOTE is an oversampling algorithm for imbalanced datasets proposed by Chawla et 
al. (2002). This sampling technique uses oversampling of the minority class by creating 
synthetic samples. Subject to the amount of oversampling requirement, neighbors from 
the k nearest are selected. For example, if the amount of oversampling needed 200 percent 
then only two of the five nearest neighbors are selected and produce one sample in the 
direction of each. For synthetic samples following steps are applied:

1. Compute the difference between nearest neighbor and feature vector (sample).
2. Generate a random number between 0 and 1, multiply the difference by this 

random number.
3. Add it, to the feature vector under consideration. This will originate the selection 

of random point beside the line segment between two specific features. 
The implementation of this algorithm requires five nearest neighbors (Han et al., 2005; 

Blagus & Lusa., 2013).

Proposed Scheme

The given classification scheme is proposed to study the performance of SVM with MKL 
(SVM+MKL) for binary imbalanced datasets. The proposed scheme is based on the above 
mentioned oversampling and hybrid algorithm. An oversampling algorithm (SMOTE) is 
applied to overcome the imbalance problem of the datasets. Each imbalanced dataset is 
partitioned into training, test, and validation sets using 60:20:20 ratios. As the performance 
of SVM is highly based on the appropriate choices of its parameters. Consequently, the 
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parameters of SVM including the parameters of the kernel functions along with the linear 
combination weights lγ  are optimized by using the proposed hybrid algorithm.

Algorithm 1
Hybrid Algorithm 
Begin
1. Setting the initial parameters, number of nests n and number of solutions Nd.
2. Setting the objective function f (x), x = (x1, x2,…, xd), adjusting the lower and upper bounds 

of the test function, and constraints (if any).
3. Initialize CS by generating the random initial solution of n host nests.
4. Find the best solution ( ) from CS at sth iteration. Initialize CMA-ES algorithm, and 

generate the ms weighted means at sth iteration with the help of recombination operators.
5. Generate the new solution Xs at sth iteration using Equation (7).
6. Set the number of iterations and a maximum number of iterations.
7. While (number of iteration < Maximum iteration) or (stop criterion).
8. Produce the new solution at (s+1)th  iteration by levy flights.
9. Evaluate its quality or fitness.
10. Choose a nest among n say (j) randomly.
11. If (fi > fj) then
12. Replace j with the new solution.
 End if
13. Abandoned the new nest using Pa and new ones are built.
14. Keep the best solution.
15. Rank the solution and find the current best.
 End while
16. Post process results and visualization.
End 

The objective function to be minimized is the misclassification error of the minority 
(positive). This optimization procedure is completed on the training dataset. Optimized 
parameters obtained from the training process are engaged with the test sets, where after 
completing the classification task, all standard evaluation measures are computed. Three 
established evaluation measures for imbalanced datasets namely, sensitivity, G Mean, and 
F measure are computed. G Mean is the geometric mean of the two prediction accuracies 
i.e. sensitivity: accuracy on the positive examples (minority class) and specificity: accuracy 
on the negative examples (majority class). It can be calculated with the help of the given 
below formula: 

G Mean= Sensitivity Specificity×

Sensitivity and specificity can be defined as:

Sensitivity =
Tp

Tp Fn+
  

Specificity = 
Tn

Tn Fp+
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where Tp  represents true positive examples, Fp  is used for false positive, Tn  for 
true negative and Fn  is used to show false negative examples. The second evaluation 
measure, F measure, the harmonic mean of the precision and sensitivity can be calculated 
with the help of the following formula: 

F measure =
2 Sensitivity Precision

Sensitivity Precision
× ×

+
 

and precision can be defined as:                                          

Precision=
Tp

Tp Fp+

The complete details of these evaluation measures can be studied from Bekkar et al. 
(2013). The values of G Mean and F measure varies between 0 and 1. The values near to 
1 reflect the good performances by the classifiers and weak performances of the classifiers 
can be assessed by the low values (values near to 0). On the other hand, the high values 
of sensitivities reflect the good performances of the classifiers on the positive examples 
(minority class) only. The complete proposed scheme for the classification task is provided 
in a flowchart in Figure 1. 

Figure 1. Flowchart of the proposed scheme for SVM+MKL
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RESULTS AND DISCUSSIONS

An experimental study was conducted by engaging two types of datasets: (1) Noisy 
borderline imbalanced datasets and (2) Real imbalanced datasets. These datasets are taken 
from a well-known datasets repository KEEL (Alcala-Fdez et al., 2011). SVM is applied 
to each preprocessed dataset by using different kernel functions: SVM+linear, SVM+RBF, 
SVM+sigmoid, and SVM+MKL.

Noisy Borderline Imbalanced Datasets

Six noisy borderline imbalanced datasets namely Clove0, Clove30, Paw0, Paw30, Subclus0, 
and Subclus30 are engaged. Each dataset is classified by using SVM+linear, SVM+RBF, 
and SVM+MKL. For all noisy borderline datasets, by adding sigmoid kernel function in the 
linear combinations of kernels, the condition of PSD could not be satisfied. As a result, the 
sigmoid kernel function is excluded from the linear combinations of kernel functions. The 
MKL for noisy borderline imbalanced datasets is studied only by using the linear weighted 
combinations of the linear kernel function and RBF kernel, which can be defined as follows:                                                                               

1 1 2 2MKL k kγ γ= +      (8)

where 1k  represents the linear kernel function, 2k  represents the RBF kernel and 
1 2,γ γ  are the weighted coefficients of these kernel function respectively. For the individual 

applications of the linear kernel function and RBF kernel with SVM, parameters are selected 
by the grid search methods. For SVM+MKL, parameters including the kernel parameter 
(ν ) and slack variable (C) and the weights of kernel functions ( 1γ and 2γ ) are optimized 
by using the proposed hybrid algorithm (see Table 1). 

Three above mentioned evaluation measures, sensitivity represented by Sen, G Mean 
by G, and F measure by F are computed. The obtained results are provided in Table 2. 
Starting from first dataset (Clove0) to the last dataset (Subclus30), SVM+linear and 

Table 1
Optimized parameters and weights of MKL for noisy borderline imbalanced datasets 

Datasets Parameters MKL= 1 1 2 2k kγ γ+
Clove0 ν =51.950,  C =827.34 MKL= 1 20.20 0.80k k+

Clove30 ν =84.53,    C =628.62 MKL= 1 20.50 0.50k k+

Paw0 ν =49.493,  C =0.794 MKL= 1 20.183 0.817k k+

Paw30 ν =381.07,  C =436.63 MKL= 1 20.2 0.8k k+

Subclus0 ν =101.29,  C =403.58 MKL= 1 20.425 0.575k k+

Subclus30 ν =182.16,  C =219.70 MKL= 1 20.42 0.58k k+
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SVM+RBF performed well in terms of the good values of evaluation measures. However, 
SVM+RBF performed comparatively better than SVM+linear resulting in good values 
of all evaluation measures on all datasets. But SVM+RBF took longer testing time than 
SVM+linear. An outstanding performance of SVM+MKL is observed by using the proposed 
scheme. The proposed scheme based on the combined effect of oversampling and hybrid 
algorithm showed a very remarkable performance on noisy borderline datasets by using the 
linear combination of kernel functions with SVM. For all datasets, the maximum values 
of evaluation measures obtained by SVM+MKL are provided and highlighted in Table 
2. A significant point in all experiments is the least testing time of SVM+MKL with the 
proposed scheme for all datasets. 

Table 2
Performance of SVM using all kernel function on noisy borderline imbalanced datasets

Evaluation 
measures Sen G F Time 

(sec) Sen G F Time 
(sec)

Datasets Clover0 Clover30
SVM+linear 0.708 0.586 0.754 7.209 0.629 0.546 0.705 7.216
SVM+RBF 0.950 0.975 0.974 8.593 0.872 0.934 0.931 7.616
SVM+MKL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 4.168

Paw0 Paw30
SVM+linear 0.775 0.586 0.810 5.722 0.868 0.631 0.853 6.012
SVM+RBF 0.717 0.847 0.835 7.823 0.815 0.903 0.898 7.610
SVM+MKL 1.000 1.000 1.000 3.105 1.000 1.000 1.000 3.420

Subclus0 Subclus30
SVM+linear 0.957 0.664 0.897 6.193 0.586 0.563 0.684 5.818
SVM+RBF 0.838 0.911 0.907 8.724 0.725 0.851 0.840 7.850
SVM+MKL 1.000 1.000 1.000 3.046 1.000 1.000 1.000 3.612

Real Imbalanced Datasets

Another experimental study is conducted on six real imbalanced datasets to observe the 
role of MKL in the performance of SVM by applying the proposed scheme. A brief detail 
of these datasets is provided in Table 3. For MKL, the linear weighted combination is 
defined by using three kernel functions as follows:

1 1 2 2 3 3MKL k k kγ γ γ= + +     (9)

where 1k  represents the linear kernel function, 2k  shows the RBF kernel and 3k
represents the sigmoid kernel function, 1γ  2γ and 3γ  are the respective weights of these 
kernel functions. During the formation of the weighted linear combination of kernel 
functions for all datasets, the condition of PSD is carefully satisfied. For sigmoid kernel 
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function, only one parameter ( sα ) is optimized whereas the other parameter is taken as fixed 
( 0c =-1) to maintain the simplicity of the optimization process. All optimized parameters 
and weights of MKL are provided in Table 4. 

Table 3
 Datasets description

Datasets Imbalance ratio (IR) Total instances
Pima 1.87 768
Haberman 2.78 306
Thyroid 5.14 215
Yeast 9.08 514
Cleveland 12.62 177
Wine 29.17 1599

For yeast dataset, by adding the sigmoid kernel function, the condition could not be 
satisfied. Therefore, for this dataset, a weighted linear combination is formed by using only 
two kernel functions, linear kernel function, and RBF kernel. To study the performance 
of SVM with MKL by applying the proposed scheme, all real imbalanced datasets are 
classified by using SVM+linear, SVM+RBF, SVM+sigmoid, and SVM+MKL. For 
SVM+MKL, all parameters and their respective weights are optimized by applying the 
proposed hybrid algorithm.

The obtained results of all evaluation measures namely Sen, G, and F from all datasets 
are provided in Table 5. For the first dataset (Pima), with imbalance ratio (IR=1.87), 
RBF and sigmoid kernel performed very well resulting in maximum values of evaluation 
measures. SVM+linear also performed well. Nevertheless, its performance is not better 
than SVM+RBF and SVM+sigmoid. SVM+MKL showed maximum sensitivity for this 
dataset with minimum testing time.  

Table 4
Optimized parameters and weights of MKL for real imbalanced datasets 

Datasets Parameters MKL= 1 1 2 2 3 3k k kγ γ γ+ +

Pima ν =26.902, C =100.0503, sα =3.2877 MKL=0.57519 1k +0.14168 2k +0.28313 3k
Haberman ν =69.244, C =471.96, sα =2.5022 MKL=0.22969 1k +0.56385 2k +0.2064 3k
Thyroid ν =2.4396, C =6.7346, sα =2.6732 MKL=0.10047 1k +0.083496 2k +0.81604 3k
Yeast ν =60.837, 1k =867.40 MKL=0.20840 1k +0.79160 2k  

Cleveland ν =50.046, C =855.44, sα =0.95289 MKL=0.200 1k +0.71 2k +0.09 3k
Wine ν =59.949, C =870.621, sα =0.90236 MKL=0.11414 1k +0.76884 2k +0.0.11702 3k
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For the second dataset, Haberman, again RBF and sigmoid kernels performed well but their 
performances on the minority class are less admirable than SVM+MKL (Sen=1.000). For the 
Thyroid dataset with IR=5.14, an outstanding performance is observed by SVM+linear 
and SVM+MKL. This time although SVM+RBF and SVM+sigmoid performed well their 
performances are less as compared to SVM+linear and SVM+MKL. On the other hand, the 
minimum testing time for SVM+MKL is observed for this dataset. For the fourth dataset 
(Yeast) with IR= 9.08, the average performances are observed by SVM+linear, SVM+RBF, 
and SVM+sigmoid. SVM+MKL remained successful in producing the maximum value of 
G (0.764) in minimum testing time. Approximately the same performances of RBF and 
sigmoid kernel functions are observed on Cleveland dataset.  For Cleveland (IR=12.62) and 
Wine (IR=29.17), an outstanding performance of SVM+MKL can be seen resulting in 
maximum values of all evaluation measures. Though, for these two datasets, the testing 
time taken by SVM+MKL is longer than the other methods. Out of six datasets, the 
outstanding performance of   SVM+MKL in terms of the maximum values of all evaluation 
measures (Sen, G, and F) is observed for three datasets (Thyroid, Cleveland,  and Wine). 
All maximum values of evaluation measures obtained from SVM+MKL are highlighted 
in Table 5. The proposed scheme for SVM+MKL based on the oversampling and hybrid 
algorithm successfully handled imbalanced datasets.    

Table 5
Performance of SVM using all kernel functions on real imbalanced datasets

Evaluation 
measures Sen G F Time 

(sec) Sen G F Time
(sec)

Datasets Pima Haberman
SVM+linear 0.844 0.880 0.913 6.797 0.574 0.732 0.728 6.029
SVM+RBF 1.000 1.000 1.000 7.230 0.984 0.992 0.992 5.601
SVM+sigmoid 1.000 1.000 1.000 6.854 0.991 0.995 0.995 5.095
SVM+MKL 1.000 0.727 0.678 1.745 1.000 0.845 0.879 1.861
                                                    Thyroid                                                         Yeast
SVM+linear 1.000 1.000 1.000 1.947 0.676 0.737 0.780 3.375
SVM+RBF 0.813 0.901 0.897 1.825 0.407 0.638 0.579 3.492
SVM+sigmoid 0.872 0.934 0.932 1.899 0.395 0.628 0.566 3.342
SVM+MKL 1.000 1.000 1.000 1.508 0.653 0.764 0.731 2.126
                                                    Cleveland                                                    Wine
SVM+linear 1.000 0.990 0.996 1.162 0.758 0.711 0.745 0.834
SVM+RBF 0.631 0.794 0.774 1.808 0.129 0.359 0.229 0.938
SVM+sigmoid 0.631 0.794 0.774 1.663 0.646 0.804 0.785 0.828
SVM+MKL 1.000 1.000 1.000 1.591 1.000 1.000 1.000 1.553
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Statistical Ranks to SVM’s with all Kernel Functions

Statistical ranks to SVM’s with all kernel functions are assigned by using two well-known 
statistical non-parametric rank test: Friedman test and Quade test. These rank tests are 
applied to both types of datasets: noisy borderline datasets and real imbalanced datasets. 
The details of these tests can be found in Demsar (2006), Garcia et al. (2007), Trawinski 
et al. (2012) and Pohlert (2014). The null hypothesis to be tested, in both tests, is that on 
the average the performances of SVM’s with all kernel functions are equal. Friedman’s test 
follows an approximately Chi-square distribution for a large number of blocks (datasets) 
and treatments (SVM with all kernel functions). As we have a small number of treatments. 
Therefore, the critical values are derived from their tables. For noisy borderline imbalanced 
datasets, as the number of blocks is 6 and number of treatment is 3. Hence, 7.00 and 4.10 
are the critical values of Friedman and Quade test respectively. All obtained results are 
provided in Table 6. The minimum ranks in Table 6 (bold ranks) are justifying the leading 
position of SVM+MKL. Graphically, these ranks are presented in Figure 2. For six real 
imbalanced datasets, as the number of treatments is 4 and number of blocks is also 6. 
Thus, the critical values for Friedman and Quade tests are 7.6 and 3.29 respectively. For 
these datasets, both tests showed insignificant results for most of the cases (see Table 7). 
On the other hand, the minimum ranks obtained by these tests justify the leading position 
of SVM+MKL. The obtained ranks for SVM+MKL are bold and shown in Table 7. The 
graphical representation of all ranks for all cases is shown in Figure 3.       

Table 6
The average ranking of SVM performances by using all kernel functions on noisy borderline imbalanced datasets

With respect to sensitivity  With respect to G Mean
Methods Friedman test  Quade test Friedman test Quade test
SVM+linear 2.5 2.7143 3 3
SVM+RBF 2.5 2.2857 2 2
SVM+MKL 1 1 1 1
Test statistics 9 9 12 21
Critical values 7 4.10 7 4.10
Decision (5%) significant significant significant significant

With respect to F measure With respect to testing time
Methods Friedman test Quade test Friedman test Quade test
SVM+linear 3 3 2 2
SVM+RBF 2 2 3 3
SVM+MKL 1 1 1 1
Test statistics 12 21 12 21
Critical values 7 4.10 7 4.10
Decision (5%) significant significant significant significant
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CONCLUSION

A study was conducted to observe the performance of SVM with MKL for binary 
imbalanced datasets including noisy borderline and real imbalanced datasets. For this given 
task, a new scheme based SMOTE and hybrid algorithm had proposed. An experimental 
study was conducted to justify the validity of the proposed scheme, by engaging the noisy 
borderline and real imbalanced datasets. For MKL, the weighted linear combinations of 
kernel functions were formed after satisfying the condition of PSD. By applying SMOTE 
and optimizing the parameters of SVM along with the weights of the kernel functions on the 
training datasets, these optimized parameters were engaged with testing datasets to fulfill the 
classification tasks. SVM is applied by using SVM+linear, SVM+RBF, SVM+sigmoid, and 
SVM+MKL to all datasets. Three evaluation measures (Sen, G, and F) were observed. An 
outstanding performance of the proposed scheme for SVM+MKL was observed for noisy 
borderline datasets. Though, an average performance was observed for real imbalanced 
datasets. In all, it can be said that our proposed scheme for SVM+MKL showed an enhanced 
performance for the classification of binary imbalanced datasets.     

Table 7
The average ranking of SVM performances by using all kernel functions on real imbalanced 
datasets 

  With respect to sensitivity  With respect to G Mean
Methods Friedman test Quade test Friedman test Quade test
SVM+linear 2.1667 2.2381 2.5833 2.8810
SVM+RBF 3.25 3.4286 3 2.8571
SVM+sigmoid 2.9167 2.9524 2.5 2.1429
SVM+MKL 1.5 1.333 1.9167 2.1190
Test statistics 3.65 3.38 2.15 0.48
Critical values 7.6 3.29 7.6 3.29
Decision (5%) insignificant significant insignificant insignificant

With respect to F measure With respect to testing time
Methods Friedman test Quade test Friedman test Quade test
SVM+linear 2.4167 2.7857 2.667 2.6667
SVM+RBF 3.00 2.8571 3.333 3.5238
SVM+sigmoid 2.50 2.1429 2.333 2.2857
SVM+MKL 2.0833 2.2143 1.6667 1.5238
Test statistics 1.55 0.36 5.20 2.52
Critical values 7.6 3.29 7.6 3.29
Decision (5%) insignificant insignificant insignificant insignificant
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(a) (b)

(c) (d)

Figure 2. Average ranks of SVM’s with all kernel functions on noisy borderline imbalanced datasets: (a) 
with respect to sensitivity; (b) with respect to G Mean; (c) with respect to F measure; and (d) with respect 
to testing time
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Figure 3. Average ranks of SVM’s with all kernel functions on real imbalanced datasets: (a) with respect 
to sensitivity; (b) with respect to G Mean; (c) with respect to F measure; and (d) with respect to testing 
time (sec)

(a) (b)

(c) (d)
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